Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Cell Infect Microbiol ; 13: 1120769, 2023.
Article in English | MEDLINE | ID: covidwho-2327368

ABSTRACT

Sepsis is identified as a potentially lethal organ impairment triggered by an inadequate host reaction to infection (Sepsis-3). Viral sepsis is a potentially deadly organ impairment state caused by the host's inappropriate reaction to a viral infection. However, when a viral infection occurs, the metabolism of the infected cell undergoes a variety of changes that cause the host to respond to the infection. But, until now, little has been known about the challenges faced by cellular metabolic alterations that occur during viral infection and how these changes modulate infection. This study concentrates on the alterations in glucose metabolism during viral sepsis and their impact on viral infection, with a view to exploring new potential therapeutic targets for viral sepsis.


Subject(s)
Glucose , Sepsis , Humans , Glucose/metabolism , Viremia , Carbohydrate Metabolism
2.
Front Med (Lausanne) ; 8: 753659, 2021.
Article in English | MEDLINE | ID: covidwho-1556286

ABSTRACT

Background: Invasive pulmonary aspergillosis (IPA) is a life-threatening complication in coronavirus disease 2019 (COVID-19) patients admitted to intensive care units (ICUs), but risk factors for COVID-19-associated IPA (CAPA) have not been fully characterized. The aim of the current study was to identify factors associated with CAPA, and assess long-term mortality. Methods: A retrospective cohort study of adult COVID-19 patients admitted to ICUs from six hospitals was conducted in Hubei, China. CAPA was diagnosed via composite clinical criteria. Demographic information, clinical variables, and 180-day outcomes after the diagnosis of CAPA were analyzed. Results: Of 335 critically ill patients with COVID-19, 78 (23.3%) developed CAPA within a median of 20.5 days (range 13.0-42.0 days) after symptom onset. Compared to those without CAPA, CAPA patients were more likely to have thrombocytopenia (50 vs. 19.5%, p < 0.001) and secondary bacterial infection prior to being diagnosed with CAPA (15.4 vs. 6.2%, p = 0.013), and to receive vasopressors (37.2 vs. 8.6%, p < 0.001), higher steroid dosages (53.9 vs. 34.2%, p = 0.002), renal replacement therapy (37.2 vs. 13.6%, p < 0.001), and invasive mechanical ventilation (57.7 vs. 35.8%, p < 0.001). In multivariate analysis incorporating hazard ratios (HRs) and confidence intervals (CIs), thrombocytopenia (HR 1.98, 95% CI 1.16-3.37, p = 0.012), vasopressor use (HR 3.57, 95% CI 1.80-7.06, p < 0.001), and methylprednisolone use at a daily dose ≥ 40 mg (HR 1.69, 95% CI 1.02-2.79, p = 1.02-2.79) before CAPA diagnosis were independently associated with CAPA. Patients with CAPA had longer median ICU stays (17 days vs. 12 days, p = 0.007), and higher 180-day mortality (65.4 vs. 33.5%, p < 0.001) than those without CAPA. Conclusions: Thrombocytopenia, vasopressor use, and corticosteroid treatment were significantly associated with increased risk of incident IPA in COVID-19 patients admitted to ICUs. The occurrence of CAPA may increase the likelihood of long-term COVID-19 mortality.

3.
Front Med (Lausanne) ; 8: 694754, 2021.
Article in English | MEDLINE | ID: covidwho-1485067

ABSTRACT

To investigate the characteristics of SARS-CoV-2 pneumonia and evaluate whether CT scans, especially at a certain CT level, could be used to predict the severity of SARS-CoV-2 pneumonia. In total 118 confirmed patients had been enrolled. All data including epidemiological, clinical characteristics, laboratory results, and images were collected and analyzed when they were administrated for the first time. All patients were divided into two groups. There were 106 severe/critical patients and 12 common ones. A total of 38 of the patients were women. The mean age was 50.5 ± 11.5 years. Overall, 80 patients had a history of exposure. The median time from onset of symptoms to administration was 8.0 days. The main symptoms included fever, cough, anorexia, fatigue, myalgia, headaches, and chills. Lymphocytes and platelets decreased and lactate dehydrogenase increased with increased diseased severity (P < 0.05). Calcium and chloride ions were decreased more significantly in severe/critical patients than in common ones (P < 0.05). The main comorbidities were diabetes, chronic cardiovascular disease, and chronic pulmonary disease, which occurred in 47 patients. In all 69 patients had respiratory failure, which is the most common SARS-CoV-2 complication, and liver dysfunction presented in 37 patients. Nine patients received mechanical ventilation therapy. One patient received continuous blood purification and extracorporeal membrane oxygenation (EMCO) treatments. The average stay was 18.1 ± 10.8 days. Four patients died. The median of the radiographic score was four in common, and five in the severe/critical illness, which was a significant difference between the two groups. The radiographic score was in negative correlation with OI (ρ = -0.467, P < 0.01). The OI in severe/critically ill cases decreased significantly as the disease progressed, which was related to the lesion area in the left lung and right lungs (ρ = 0.688, R = 0.733). OI, the lesion area in the left lung and right lungs, lymphocytes, etc. were associated with different degrees of SARS-CoV-2 pneumonia (P < 0.05). The lesion area in both lungs were possible predictive factors for severe/critical cases. Patients with SARS-CoV-2 pneumonia showed obvious clinical manifestations and laboratory result changes. Combining clinical features and the quantity of the lesion area in the fourth level of CT could effectively predict severe/critical SARS-CoV-2 cases.

4.
Front Med (Lausanne) ; 7: 611460, 2020.
Article in English | MEDLINE | ID: covidwho-1389196

ABSTRACT

Background: The data on long-term outcomes of patients infected by SARS-CoV-2 and treated with extracorporeal membrane oxygenation (ECMO) in China are merely available. Methods: A retrospective study included 73 patients infected by SARS-CoV-2 and treated with ECMO in 21 intensive care units in Hubei, China. Data on demographic information, clinical features, laboratory tests, ECMO durations, complications, and living status were collected. Results: The 73 ECMO-treated patients had a median age of 62 (range 33-78) years and 42 (63.6%) were males. Before ECMO initiation, patients had severe respiratory failure on mechanical ventilation with a median PO2/FiO2 of 71.9 [interquartile range (IQR), 58.6-87.0] mmHg and a median PCO2 of 62 [IQR, 43-84] mmHg on arterial blood analyses. The median duration from symptom onset to invasive mechanical ventilation, and to ECMO initiation was19 [IQR, 15-25] days, and 23 [IQR, 19-31] days. Before and after ECMO initiation, the proportions of patients receiving prone position ventilation were 58.9 and 69.9%, respectively. The median duration of ECMO support was 18.5 [IQR 12-30] days. During the treatments with ECMO, major hemorrhages occurred in 31 (42.5%) patients, and oxygenators were replaced in 21 (28.8%) patients. Since ECMO initiation, the 30-day mortality and 60-day mortality were 63.0 and 80.8%, respectively. Conclusions: In Hubei, China, the ECMO-treated patients infected by SARS-CoV-2 were of a broad age range and with severe hypoxemia. The durations of ECMO support, accompanied with increased complications, were relatively long. The long-term mortality in these patients was considerably high.

5.
Virol Sin ; 35(6): 744-751, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1217476

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has spread around the world with high mortality. To diagnose promptly and accurately is the vital step to effectively control its pandemic. Dynamic characteristics of SARS-CoV-2-specific antibodies which are important for diagnosis of infection have not been fully demonstrated. In this retrospective, single-center, observational study, we enrolled the initial 131 confirmed cases of COVID-19 at Jin-Yin-Tan Hospital who had at least one-time antibody tested during their hospitalization. The dynamic changes of IgM and IgG antibodies to SARS-CoV-2 nucleocapsid protein in 226 serum samples were detected by ELISA. The sensitivities of IgM and IgG ELISA detection were analyzed. Result showed that the sensitivity of the IgG ELISA detection (92.5%) was significantly higher than that of the IgM (70.8%) (P < 0.001). The meantimes of seroconversion for IgM and IgG were 6 days and 3 days, respectively. The IgM and IgG antibody levels peaked at around 18 days and 23 days, and then IgM fell to below the baseline level at about day 36, whereas IgG maintained at a relatively high level. In conclusion, antibodies should be detected to aid in diagnosis of COVID-19 infection. IgG could be a sensitive indicator for retrospective diagnosis and contact tracing, while IgM could be an indicator of early infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Serological Testing/methods , China/epidemiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Nucleocapsid Proteins/immunology , Pandemics , Retrospective Studies , Young Adult
6.
Front Immunol ; 11: 607583, 2020.
Article in English | MEDLINE | ID: covidwho-1084623

ABSTRACT

The ongoing pandemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading and has resulted in grievous morbidity and mortality worldwide. Despite the high infectiousness of SARS-CoV-2, the majority of infected individuals are asymptomatic or have mild symptoms and could eventually recover as a result of their balanced immune function. On the contrary, immuno-compromised patients are prone to progress into severe or critical types underpinned by the entanglement of an overexuberant proinflammatory response and injured immune function. Therefore, well-coordinated innate and adaptive immune systems are pivotal to viral eradication and tissue repair. An in-depth understanding of the immunological processes underlying COVID-19 could facilitate rapidly identifying and choosing optimal immunotherapy for patients with severe SARS-CoV-2 infection. In this review, based on current immunological evidence, we describe potential immune mechanisms and discuss promising immunotherapies for COVID-19, including IL-6R blockades, convalescent plasma, intravenous gamma globulin, thymosin alpha1, corticosteroids, and type-I interferon, and recent advances in the development of COVID-19 vaccines.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Immunotherapy/methods , Humans , SARS-CoV-2
8.
Front Med (Lausanne) ; 7: 607821, 2020.
Article in English | MEDLINE | ID: covidwho-1000106

ABSTRACT

Background: High-flow nasal cannula (HFNC) has been recommended as a suitable choice for the management of coronavirus disease 2019 (COVID-19) patients with acute hypoxemic respiratory failure before mechanical ventilation (MV); however, delaying MV with HFNC therapy is still a dilemma between the technique and clinical management during the ongoing pandemic. Methods: Retrospective analysis of COVID-19 patients treated with HFNC therapy from four hospitals of Wuhan, China. Demographic information and clinical variables before, at, and shortly after HFNC initiation were collected and analyzed. A risk-stratification model of HFNC failure (the need for MV) was developed with the 324 patients of Jin Yin-tan Hospital and validated its accuracy with 69 patients of other hospitals. Results: Among the training cohort, the median duration of HFNC therapy was 6 (range, 3-11), and 147 experienced HFNC failure within 7 days of HFNC initiation. Early predictors of HFNC failure on the basis of a multivariate regression analysis included age older than 60 years [odds ratio (OR), 1.93; 95% confidence interval (CI), 1.08-3.44; p = 0.027; 2 points], respiratory rate-oxygenation index (ROX) <5.31 (OR, 5.22; 95% CI, 2.96-9.20; p < 0.001; 5 points) within the first 4 h of HFNC initiation, platelets < 125 × 109/L (OR, 3.04; 95% CI, 1.46-6.35; p = 0.003; 3 points), and interleukin 6 (IL-6) >7.0 pg/mL (OR, 3.34; 95% CI, 1.79-6.23; p < 0.001; 3 points) at HFNC initiation. A weighted risk-stratification model of these predictors showed sensitivity of 80.3%, specificity of 71.2% and a better predictive ability than ROX index alone [area under the curve (AUC) = 0.807 vs. 0.779, p < 0.001]. Six points were used as a cutoff value for the risk of HFNC failure stratification. The HFNC success probability of patients in low-risk group (84.2%) was 9.84 times that in the high-risk group (34.8%). In the subsequent validation cohort, the AUC of the model was 0.815 (0.71-0.92). Conclusions: Aged patients with lower ROX index, thrombocytopenia, and elevated IL-6 values are at increased risk of HFNC failure. The risk-stratification models accurately predicted the HFNC failure and early stratified COVID-19 patients with HFNC therapy into relevant risk categories.

9.
Crit Care ; 24(1): 394, 2020 07 06.
Article in English | MEDLINE | ID: covidwho-655489

ABSTRACT

BACKGROUND: The global numbers of confirmed cases and deceased critically ill patients with COVID-19 are increasing. However, the clinical course, and the 60-day mortality and its predictors in critically ill patients have not been fully elucidated. The aim of this study is to identify the clinical course, and 60-day mortality and its predictors in critically ill patients with COVID-19. METHODS: Critically ill adult patients admitted to intensive care units (ICUs) from 3 hospitals in Wuhan, China, were included. Data on demographic information, preexisting comorbidities, laboratory findings at ICU admission, treatments, clinical outcomes, and results of SARS-CoV-2 RNA tests and of serum SARS-CoV-2 IgM were collected including the duration between symptom onset and negative conversion of SARS-CoV-2 RNA. RESULTS: Of 1748 patients with COVID-19, 239 (13.7%) critically ill patients were included. Complications included acute respiratory distress syndrome (ARDS) in 164 (68.6%) patients, coagulopathy in 150 (62.7%) patients, acute cardiac injury in 103 (43.1%) patients, and acute kidney injury (AKI) in 119 (49.8%) patients, which occurred 15.5 days, 17 days, 18.5 days, and 19 days after the symptom onset, respectively. The median duration of the negative conversion of SARS-CoV-2 RNA was 30 (range 6-81) days in 49 critically ill survivors that were identified. A total of 147 (61.5%) patients deceased by 60 days after ICU admission. The median duration between ICU admission and decease was 12 (range 3-36). Cox proportional-hazards regression analysis revealed that age older than 65 years, thrombocytopenia at ICU admission, ARDS, and AKI independently predicted the 60-day mortality. CONCLUSIONS: Severe complications are common and the 60-day mortality of critically ill patients with COVID-19 is considerably high. The duration of the negative conversion of SARS-CoV-2 RNA and its association with the severity of critically ill patients with COVID-19 should be seriously considered and further studied.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/mortality , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Aged , COVID-19 , China/epidemiology , Coronavirus Infections/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Retrospective Studies , Risk Factors
10.
Brain Behav Immun ; 88: 50-58, 2020 08.
Article in English | MEDLINE | ID: covidwho-549071

ABSTRACT

Sleep is known to play an important role in immune function. However, the effects of sleep quality during hospitalization for COVID-19 remain unclear. This retrospective, single-center cohort study was conducted to investigate the effects of sleep quality on recovery from lymphopenia and clinical outcomes in hospitalized patients with laboratory-confirmed COVID-19 admitted to the West District of Wuhan Union Hospital between January 25 and March 15, 2020. The Richards-Campbell sleep questionnaire (RCSQ) and Pittsburgh Sleep Quality Index (PSQI) were used to assess sleep quality. The epidemiological, demographic, clinical, laboratory, treatment, and outcome data were collected from electronic medical records and compared between the good-sleep group and poor-sleep group. In all, 135 patients (60 in good-sleep group and 75 in poor-sleep group) were included in this study. There were no significant between-group differences regarding demographic and baseline characteristics, as well as laboratory parameters upon admission and in-hospital treatment. Compared with patients in the good-sleep group, patients in the poor-sleep group had lower absolute lymphocyte count (ALC) (day 14: median, 1.10 vs 1.32, P = 0.0055; day 21: median, 1.18 vs 1.48, P = 0.0034) and its reduced recovery rate (day 14: median, 56.91 vs 69.40, P = 0.0255; day 21: median, 61.40 vs 111.47, P = 0.0003), as well as increased neutrophil-to-lymphocyte ratio (NLR; day 14: median, 3.17 vs 2.44, P = 0.0284; day 21: median, 2.73 vs 2.23, P = 0.0092) and its associated deterioration rate (day 14: median, -39.65 vs -61.09, P = 0.0155; day 21: median, -51.40% vs -75.43, P = 0.0003). Nine [12.0%] patients in the poor-sleep group required ICU care (P = 0.0151); meanwhile, none of the patients in good-sleep group required ICU care. Patients in the poor-sleep group had increased duration of hospital stay (33.0 [23.0-47.0] days vs 25.0 [20.5-36.5] days, P = 0.0116) compared to those in the good-sleep group. An increased incidence of hospital-acquired infection (seven [9.3%] vs one [1.7%]) was observed in the poor-sleep group compared to the good-sleep group; however, this difference was not significant (P = 0.1316). In conclusion, poor sleep quality during hospitalization in COVID-19 patients with lymphopenia is associated with a slow recovery from lymphopenia and an increased need for ICU care.


Subject(s)
Coronavirus Infections/blood , Lymphopenia/blood , Pneumonia, Viral/blood , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep , Aged , Betacoronavirus , COVID-19 , Convalescence , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Female , Health Facility Environment , Hospitalization , Humans , Intensive Care Units/statistics & numerical data , Length of Stay , Lymphopenia/complications , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Retrospective Studies , SARS-CoV-2 , Sleep Initiation and Maintenance Disorders/complications , Time Factors
11.
Lancet Respir Med ; 8(5): 475-481, 2020 05.
Article in English | MEDLINE | ID: covidwho-1733

ABSTRACT

BACKGROUND: An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. METHODS: In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. FINDINGS: Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3-11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. INTERPRETATION: The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1-2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. FUNDING: None.


Subject(s)
Coronavirus Infections/mortality , Coronavirus Infections/therapy , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Critical Illness , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL